RANDOM MATRICES HOMEWORK SHEET 1

INSTRUCTOR: RON PELED, TEL AVIV UNIVERSITY

To hand in by December 26 to the instructor in class.

 The solutions should be written in English if possible.The numbering of exercises is from "An Introduction to Random Matrices" by Anderson, Guionnet, Zeitouni which is available at http://cims.nyu.edu/~zeitouni/cupbook.pdf.
(i) Exercise 2.1.5: Recall the semicircle distribution whose density is $\sigma(x):=\frac{1}{2 \pi} \sqrt{4-x^{2}} 1_{|x| \leqslant 2}$. Define its Stieltjes transform by

$$
S(z):=\int_{\mathbb{R}} \frac{\sigma(x)}{x-z} d x, \quad z \in \mathbb{C} \backslash[-2,2] .
$$

Prove that

$$
S(z)=\frac{z}{2}\left(\sqrt{1-\frac{4}{z^{2}}}-1\right), \quad z \in \mathbb{C} \backslash[-2,2] .
$$

Hint: You may rely on the generating function of the Catalan numbers (Lemma 2.1.3).
(ii) Solve Exercise 2.1.30 from the book.

Clarification: The assumptions on X_{N} is that it is a real symmetric $N \times N$ matrix whose entries are independent except for the symmetry restriction (that is, on and above diagonal entries are independent), though not necessarily identically distributed, have zero mean and satisfy the bound $\sup _{N, i, j} \mathbb{E} e^{\lambda N X_{N}(i, j)^{2}} \leqslant C$ for some $\lambda, C>0$.
In part (a) one needs to add the assumption that $\|z\|_{2}=1$.
In part (b) the term $z^{T} X_{N} z_{i}$ should be replaced by $\left(z-z_{i}\right)^{T} X_{N} z_{i}$. One may also prove instead the related inequality that $(1-\delta)^{2} \sup _{z:\|z\|_{2}=1} z^{T} X_{N} z \leqslant \sup _{z_{i} \in \mathcal{N}_{\delta}} z_{i}^{T} X_{N} z_{i}$.

Hints to part (a): It may be of use to prove that if W_{1}, \ldots, W_{N} are independent zero mean random variables satisfying $\sup _{i} \mathbb{E} e^{\lambda W_{i}^{2}} \leqslant C$ for some $\lambda, C>0$ then there exist $\lambda^{\prime}, C^{\prime}>0$ (depending only on λ and C) such that $\mathbb{E} e^{\lambda^{\prime}\left(a_{1} W_{1}+\cdots+a_{N} W_{N}\right)^{2}} \leqslant C^{\prime}$ for all $a_{1}, \ldots, a_{N} \in \mathbb{R}$ satisfying $a_{1}^{2}+\cdots+a_{N}^{2}=1$. One way to approach this is to first prove that there exists $c>0$ such that $\sup _{i} \mathbb{E} e^{s W_{i}} \leqslant e^{c s^{2}}$ for all $s \in \mathbb{R}$.

It may also be helpful to note that if $X=Y+Z$ for random matrices X, Y, Z then the event $\|X z\|_{2}>C$ implies that either $\|Y z\|_{2}>\frac{C}{2}$ or $\|Z z\|_{2}>\frac{c}{2}$. This can be used to avoid dealing with the lack of independence stemming from the symmetry of X_{N}.
(iii) Recall that a sequence of probability measures $\left(\mu_{n}\right)$ on \mathbb{R} converges weakly to a probability measure μ on \mathbb{R} if

$$
\int f d \mu_{n} \rightarrow \int f d \mu \quad \text { as } n \rightarrow \infty
$$

for every bounded, continuous $f: \mathbb{R} \rightarrow \mathbb{R}$.
(a) Prove that μ_{n} converges weakly to μ if and only if

$$
\sup _{f}\left|\int f d \mu_{n}-\int f d \mu\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

where the supremum is taken over all bounded, Lipschitz functions with constant 1 , that is, all f in
BLip $:=\{f: \mathbb{R} \rightarrow \mathbb{R}:|f(x)| \leqslant 1$ for all x and $|f(x)-f(y)| \leqslant|x-y|$ for all $x, y\}$.
Remark: The same is true for probability measures over any Polish space.
Hint: For each $\varepsilon>0$ there is an M with $\mu([-M, M]) \geqslant 1-\varepsilon$. Approximate with piecewise linear functions.
(b) Let d be a metric on probability measures on \mathbb{R} satisfying that $d\left(\mu_{n}, \mu\right) \rightarrow 0$ as $n \rightarrow \infty$ if and only if μ_{n} converges weakly to μ. Let $\left(\mu_{n}\right)$ be a sequence of random probability measures and μ be a deterministic probability measure. Prove that μ_{n} converges to μ in the metric d in probability, in the sense that

$$
\text { for every } \varepsilon>0, \lim _{n \rightarrow \infty} \mathbb{P}\left(d\left(\mu_{n}, \mu\right)>\varepsilon\right)=0
$$

if and only if μ_{n} converges to μ weakly in probability, in the sense that for every bounded, continuous $f: \mathbb{R} \rightarrow \mathbb{R}$ and every $\varepsilon>0, \lim _{n \rightarrow \infty} \mathbb{P}\left(\left|\int f d \mu_{n}-\int f d \mu\right|>\varepsilon\right)=0$.

Remark: Part (a) of the exercise gives a metric satisfying the condition. In class we applied this to the case that μ_{n} is the empirical measure of eigenvalues of an $n \times n$ Wigner matrix and μ is the semicircle law.
Hint: Starting with convergence in d in probability, one may use an argument of the form "every subsequence has a further subsubsequence ...". In the other direction, one may develop the ideas in part (a) of the exercise.
(iv) Exercise 2.3.4.
(a) Prove that for any $u \geqslant 0, v \in \mathbb{R}$,

$$
u v \leqslant u \log u-u+e^{v} .
$$

Remark: This is a consequence of Young's inequality (but may also be proved directly). As usual, we set $0 \log 0:=0$.
(b) Let P be a probability measure on \mathbb{R}^{d}. Let $f: \mathbb{R}^{d} \rightarrow[0, \infty)$ be in $L^{1}(P)$. Prove that $\int f \log \left(\frac{f}{\int f d P}\right) d P=\sup \left\{\int f g d P: g: \mathbb{R}^{d} \rightarrow \mathbb{R}\right.$ satisfies $\left.\int e^{g} d P \leqslant 1\right\}$.
(c) Let Q_{1}, \ldots, Q_{d} be probability measures on \mathbb{R} and $P:=Q_{1} \times Q_{2} \times \cdots \times Q_{d}$. Let $g: \mathbb{R}^{d} \rightarrow R$ satisfy $\int e^{g} d P \leqslant 1$. Define

$$
g^{i}\left(x_{1}, \ldots, x_{d}\right):=\log \left(\frac{\int e^{g\left(x_{1}, \ldots, x_{d}\right)} d Q_{1}\left(x_{1}\right) \ldots d Q_{i-1}\left(x_{i-1}\right)}{\int e^{g\left(x_{1}, \ldots, x_{d}\right)} d Q_{1}\left(x_{1}\right) \ldots d Q_{i}\left(x_{i}\right)}\right), \quad 1 \leqslant i \leqslant d
$$

Prove that for any $f: \mathbb{R}^{d} \rightarrow[0, \infty)$ in $L^{1}(P)$,

$$
\begin{equation*}
\int f g d P \leqslant \sum_{i=1}^{d} \iint f_{i} \cdot\left(g^{i}\right)_{i} d Q_{i} d P \tag{1}
\end{equation*}
$$

where for $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and fixed $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d}$ we let $h_{i}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $h_{i}\left(x_{i}\right):=h\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{d}\right)$ (thus, a more detailed form of the integral on the right-hand side of (1) is $\iint f_{i}\left(x_{i}\right) \cdot\left(g^{i}\right)_{i}\left(x_{i}\right) d Q_{i}\left(x_{i}\right) d P\left(x_{1}, \ldots, x_{d}\right)$.
(d) Deduce that if Q_{1}, \ldots, Q_{d} satisfy the log-Sobolev inequality with constant $c>0$ then the same is true for their product measure P.

